Koszul Duality Complexes for the Cohomology of Iterated Loop Spaces of Spheres
نویسندگان
چکیده
— The goal of this article is to make explicit a structured complex computing the cohomology of a profinite completion of the n-fold loop space of a sphere of dimension d < n. Our construction involves: the free complete algebra in one variable associated to any fixed En-operad; an element in this free complete algebra determined by a morphism from the operad of L∞-algebras to an operadic suspension of our En-operad. As such, our complex is defined purely algebraically in terms of characteristic structures of En-operads. We deduce our main theorem from several results obtained in a previous series of articles – namely: a connection between the cohomology of iterated loop spaces and the cohomology of algebras over En-operads, and a Koszul duality result for En-operads. We use notably that the Koszul duality of En-operads makes appear structure maps of the cochain algebra of spheres.
منابع مشابه
Masterclass on Koszul Duality for Operads
The idea defining an operad goes back in a sense to Galois for which “the operations are mathematical objects”. This notion is used to model the operations acting on algebraic structures. For instance, there is an operad encoding associative algebras, Lie algebras and commutative algebras respectively. The definition of operad was first given in algebraic topology around 1970, where it was used...
متن کاملGraph Homology: Koszul and Verdier Duality
We show that Verdier duality for certain sheaves on the moduli spaces of graphs associated to Koszul operads corresponds to Koszul duality of operads. This in particular gives a conceptual explanation of the appearance of graph cohomology of both the commutative and Lie types in computations of the cohomology of the outer automorphism group of a free group. Another consequence is an explicit co...
متن کاملThe Cohomology of Algebras over Moduli Spaces
The purpose of this paper is to introduce the cohomology of various algebras over an operad of moduli spaces including the cohomology of conformal field theories (CFT’s) and vertex operator algebras (VOA’s). This cohomology theory produces a number of invariants of CFT’s and VOA’s, one of which is the space of their infinitesimal deformations. The paper is inspired by the ideas of Drinfeld [5],...
متن کاملKoszul Duality for Modules over Lie Algebras
Let g be a reductive Lie algebra over a field of characteristic zero. Suppose that g acts on a complex of vector spaces M by iλ and Lλ, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of M. We establish Koszul duality between them.
متن کاملKoszul and Gorenstein properties for homogeneous algebras
Koszul property was generalized to homogeneous algebras of degree N > 2 in [5], and related to N -complexes in [7]. We show that if the N -homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem [23] to A, i.e., there is a Poincaré duality between Hochschild homology and cohomology of A, as for N = 2. Mathem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010